Enerji Verimliliği ve Karbon Ayak İzi Azaltımı

Öğr. Gör. Ceren Aydın

DOI: https://doi.org/10.61150/gedikyay.240408

s.155-169

Enerji verimliliği uygulamaları, özellikle yerel yönetimler, sanayi kuruluşları ve bireyler tarafından benimsenen stratejilerle desteklendiğinde, karbon ayak izinin azaltılması mümkün hâle gelmektedir. İklim politikaları çerçevesinde teşvik edilen bu uygulamalar, karbon emisyonlarını azaltmanın yanı sıra ekonomik sürdürülebilirliğe de katkıda bulunarak kaynakların daha etkin kullanılmasını sağlar. Örneğin, akıllı bina sistemleri, enerji yönetimi teknolojileri ve yenilikçi malzeme kullanımının desteklenmesi, enerji verimliliğini artırmak için etkili çözümler sunmaktadır. Bu bölümde enerji verimliliği ve karbon ayak izi arasındaki ilişkiyi yaşam döngüsü değerlendirmesi (LCA) ve sürdürülebilir malzeme kullanımı perspektifinden inceleyeceğiz. Ayrıca bu uygulamaların bireysel binalar ve geniş kapsamlı altyapılar üzerindeki etkilerini değerlendirilecektir (IRENA, 2019).

Kaynakça

  • Bualuang, P., et al. (2024). Utilization of dumped coal ash from power-plant landfills for carbon footprint reduction in sustainable pavement base construction. Construction and Building Materials, 275, 122088.
  • Camacho, E. F., & Berenguel, M. (2012). Control of solar energy systems. Department of System Engineering and Automatic Control, Escuela Superior de Ingenieros, University of Sevilla, Spain.
  • Camacho, E. F., & Gallego, A. J. (2015). Model predictive control in solar trough plants: A review. IFAC-PapersOnLine, 48(23), 278–285.
  • Camacho, E. F., Berenguel, M., Alvarado, I., & Limon, D. (2010). Control of solar power systems: A survey. Presented at the 9th International Symposium on Dynamics and Control of Process Systems (DYCOPS), Leuven, Belgium.
  • Delgado, R., & Campbell, H. E. (2014). Adaptation and sizing of solar water heaters in desert areas: For residential and hotels. Energy Procedia, 57, 2725–2732.
  • Haque, F. (2017). The effects of board characteristics and sustainable compensation policy on carbon performance of UK firms. British Accounting Review, 49, 347–364.
  • Hojnik, J., & Ruzzier, M. (2016). Drivers of and barriers to eco-innovation: A case study. International Journal of Sustainable Economy, 8(4), 273–294.
  • Hondo, H. (2005). Life cycle GHG emission analysis of power generation systems: Japanese case. Energy, 30(11–12), 2042–2056.
  • Horbach, J., Rammer, C., & Rennings, K. (2012). Determinants of eco-innovations by type of environmental impact: The role of regulatory push/pull, technology push, and market pull. Ecological Economics, 78, 112–122.
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.
  • International Renewable Energy Agency (IRENA). (2018). Global energy transformation: A roadmap to 2050. Abu Dhabi: IRENA.
  • International Renewable Energy Agency (IRENA). (2019). Global energy transformation: A roadmap to 2050 (2019 edition). Abu Dhabi: IRENA.
  • Kairies-Alvarado, S., et al. (2021). Energy efficiency in public buildings and its impact on carbon footprint. Journal of Environmental Management, 285, 112158.
  • Kerr, W. R., & Nanda, R. (2015). Financing innovation. Annual Review of Financial Economics, 7, 445–462.
  • Kostka, G., Moslener, U., & Andreas, J. (2013). Barriers to increasing energy efficiency: Evidence from small and medium-sized enterprises in China. Journal of Cleaner Production, 57, 59–68.
  • Ministry of Energy and Natural Resources, Turkey. (2024). Türkiye enerji planı ve yenilenebilir enerji yatırımları. Presentation by the Renewable Energy and New Technologies Department.
  • National Renewable Energy Laboratory (NREL). (2024). Life cycle greenhouse gas emissions from solar photovoltaics (Fact Sheet). U.S. Department of Energy.
  • Organisation for Economic Co-operation and Development (OECD). (2017). Enhancing the contributions of SMEs in a global and digitalized economy. OECD Publishing.
  • Qu, S., Hu, Y., Wei, R., Yu, K., Liu, Z., Zhou, Q., Wang, C., & Zhang, L. (2024). Carbon footprint drivers in China’s municipal wastewater treatment plants and mitigation opportunities through electricity and chemical efficiency. Engineering. https://doi.org/10.1016/j.eng.2024.01.021
  • Yin, J., Wang, M., Yu, X., Wang, M., Zhang, Y., Chen, T., & Liu, J. (2024). Carbon footprint impact of waste sorting on the municipal household waste treatment system: A community case study of Hangzhou. Circular Economy.